
Autonomous Cyberattack with Security-augmented
Generative Artificial Intelligence

Jonathan Gregory and Qi Liao
Department of Computer Science

Central Michigan University
Mount Pleasant, USA

{grego3j, liao1q}@cmich.edu

Abstract—Ethical hacking and penetration testing is a vital
task by cybersecurity professionals to find and exploit possible
vulnerabilities in a system before malicious actors do. However,
system hacking has a high barrier to entry that necessitates
years of experiential learning and formal education. The rapid
development of generative artificial intelligence (AI) may poten-
tially lower the barrier to entry. This research experiments with
automatic penetration testing via large language models (LLMs)
augmented with security information. This research uses a locally
hosted Mistral 7B model with Low-Rank Adaptation (LoRA) fine-
tuning and Retrieval-Augmented Generation (RAG) to improve
penetration testing. When the LLMs are fine tuned with limited
and unstructured security data such as privilege escalation
articles from a few public web sites, the system succeeds in
achieving privilege escalation on Linux hosts. The results of this
research suggest that no-cost LLM-assisted penetration testing
is possible even on ordinary PCs using locally hosted models.
Future research is needed to achieve more diversified attacks
and discover zero-day vulnerabilities, perhaps with better prompt
engineering, models, and security data.

Index Terms—Cybersecurity, Generative Artificial Intelligence,
Machine Learning, Large Language Models, Low-Rank Adap-
tation, Retrieval-Augmented Generation, Penetration Testing,
Hacking, Attacks and Defense, Vulnerability

I. INTRODUCTION

Penetration testing (pen testing) can be considered a sort of
roleplay in which well-intentioned cybersecurity profession-
als, i.e., ethical hackers, take on the role of an adversary
and attempt to find weaknesses in a computer system by
working to expose vulnerabilities in this system. By thinking
outside the box and working within an ethical framework
to exploit vulnerabilities without actually causing harm or
stealing information, penetration testers (or pen testers) and
related cybersecurity professionals serve a vital role to prevent
attacks that could incur tangible and expensive costs against
individuals, organizations, and corporations. However, pen
testing has a high barrier to entry. Effective pen testers draw on
years of education, professional development, and experience
in penetration testing and other cybersecurity activities, such
as Capture-the-Flag (CTF) competitions, to quickly recognize
flaws in code or system configurations and develop exploits
[1]. In other words, pen testing requires a holistic knowledge
of computers and computer system interactions, knowledge
that is necessarily the product of years of hands-on experience.

There is therefore the fundamental problem in the cyber-
security industry that competent penetration testers are des-

perately needed in today’s increasingly computer-dependent
world but it is difficult to find such experienced professionals.
One solution to this problem is to lower the barrier to entry to
become a penetration tester. Advances in artificial intelligence
(AI) and machine learning (ML), particularly in the field of
natural language generation and processing and generative AI,
show promise in reducing this dependence on accumulated
experiential knowledge. In particular, the recent emergence
of extremely sophisticated Large Language Models (LLMs)
serving as chat bots and intelligent assistants for things such
as code generation and text analysis demonstrate that tasks
that once required domain-specific knowledge can now be
greatly simplified using machine learning models. It is natural
to question if LLMs may be adapted for use in generative
cybersecurity tasks and, in particular, penetration testing.

LLMs and other forms of generative AI have been adapted
by researchers for cybersecurity tasks. For example, re-
searchers [2] used OpenAI’s GPT-3 to generate hexadecimal
sequences resembling malware that could evade detection by
various black-box ML classifiers, thus showing the adversarial
capabilities of LLM-generated code. For the higher-level task
of threat vector detection and exploit planning, the OpenAI’s
commercial ChatGPT LLM can feasibly plan legitimate attack
vectors between devices given enough information [3]. LLMs
have also been used by researchers for other forms of attack
recognition, honeypot log parsing, attack technique mapping,
and exploitative code generation [4]. Unfortunately, according
to [5], these tools can easily be adapted by malicious cyber
actors, demonstrating that it is vital to research the adversarial
uses of this technology. Pen testing with LLMs is therefore a
valuable area of research.

Of most interest in this research is the direct use of
large language models for planning, analyzing, and executing
penetration tests. Several recent works have demonstrated the
feasibility of LLM-based penetration testing. For example,
PentestGPT [6] uses a human-in-the-loop approach whereby
the LLM suggests attack vectors and techniques and the human
executes them and feeds the responses back to the LLM.
While this approach is promising, it is still at least partially
reliant upon intervention by an experienced cybersecurity
professional and therefore falls short of the goal of automated
pen testing. Likewise, in the recent article [7], researchers
showed that LLMs can be used to detect security flaws in

270

2024 IEEE International Conference on Cyber Security and Resilience (CSR)
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 R

es
ili

en
ce

 (C
SR

) |
 9

79
-8

-3
50

3-
75

36
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
R6

16
64

.2
02

4.
10

67
94

70

Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

code from the OWASP Benchmark Project, but the LLMs
used in this research were also heavily dependent on human
intervention in the form of prompt engineering.

This research poses the following research question: Can
LLMs when augmented with specific security information be
adapted for use in autonomous penetration testing that does
not require high-performance computing hardware? Solving
this research question will democratize AI-assisted penetration
testing by allowing cybersecurity professionals and enthusiasts
to run autonomous penetration testing LLMs on commercial-
grade equipment, thus lowering the barrier to entry for pen-
etration testing and making penetration testing more efficient
and scalable. To that end, this research adopts a local LLM
model, i.e., Mistral 7B [8] that resides on a local machine.
To improve model performance, this research proposes to use
Low-Rank Adaptation (LoRA) [9] for parameter-efficient fine
tuning to adapt the model to pen testing-specific material and
retrieval-augmented generation (RAG) [10] to bolster model
performance using document-sourced knowledge. The novelty
of this research is the fine-tuning and localized implementation
of the LLMs for the creation of a portable penetration testing
toolkit, which no other research has investigated.

The baseline Mistral 7B, a LoRA fine-tuned version of
this model, and a Retrieval-Augmented version of this model
were tested against two vulnerable virtual machines from
a specially configured LLM penetration testing benchmark
[11]. The experiment results confirm that the RAG-augmented
baseline model successfully escalates privileges to achieve a
root shell using SUDO vulnerabilities. With limited success,
this promotes the use of generative AI such as localized
large language models, when augmented and fine-tuned with
security information, to execute autonomous penetration tests
using average PCs. The results from this research outline
further steps towards the goal of democratized, locally hosted
LLM-assisted penetration testing.

The paper proceeds as follows. Section II summarizes
related work of LLM-based penetration testing. Section III
describes the system architecture and Section IV discusses the
results. Finally, Section V concludes and outlines the further
work.

II. RELATED WORK

Various hard-coded enumeration programs exist for the
purpose of Linux privilege escalation, such as LinPEAS,
LinEnum, and LinSmartEnum [12]. However, these enumera-
tion scripts are heavily dependent on knowledgeable cyberse-
curity professionals to interpret their outputs and translate the
information gleaned from these scripts into actual attacks. To
that end, LLM-assisted penetration testing has been explored
in several different studies. A first-of-its-kind framework [11],
[13] was proposed for testing LLMs for penetration testing.
However, their work only explored using in-context learning
to augment model performance, thus leaving the door open to
test the performance of fine-tuned, locally hosted LLMs as a
novel improvement to this research. Another limitation of the
above research is the dependency on OpenAI’s LLMs, which

are hosted externally and thus are more limited and costly
than local implementations of LLMs. Specifically, although
a LLaMa 2 70-billion parameter model was tested in [11],
tests were inconclusive in showing that local models could
demonstrate comparable penetration testing abilities as those
hosted by OpenAI. Since locally hosted LLMs are not subject
to content filtering by OpenAI, do not incur the same usage
costs as cloud-based LLMs, and can be modified for domain-
specific tasks, local LLMs are thus of great interest for this
research. Our fully local implementation of small-parameter
models will democratize AI-assisted penetration testing by
allowing cybersecurity professionals to run autonomous pen-
etration testing LLMs on their personal equipment.

For resource-constrained environments, two methods for
allowing a pretrained LLM to gain domain-specific knowl-
edge are available: parameter-efficient fine-tuning via Low-
Rank Adaptation (LoRA) and Retrieval-Augmented Genera-
tion (RAG). Hu et al. [9] proposed LoRA as an alternative
to traditional machine learning fine-tuning, which requires
updating all of the parameters on a model and so can be
prohibitively expensive for machine learning models like
LLMs that contain billions or trillions of parameters. LoRA
is a space-, time-, and cost-efficient method of updating the
weights of a pretrained model in an additive manner where
instead of updating the full weight matrices for all layers of
a model, the initial weights for the model are frozen and two
matrices of smaller dimensions that encode additional updates
to the full weight matrix are updated and later added to the
model. Essentially, LoRA allows weight updates to occur in a
much lower dimension depending on the choice of the rank,
thus allowing for more efficient training and fine-tuning. As
demonstrated by research [14], LoRA is an effective method
for fine-tuning even small models like Meta AI’s Llama-7B
for domain-specific tasks, thus showing the utility of this
technique in this research.

Retrieval-Augmented Generation was proposed by Lewis et
al. in [10] as a way to increase the knowledge base available
for LLMs and therefore combat LLM hallucinations, which
is fabricated information presented by the model due to its
lack of knowledge on a subject. RAG works by giving models
non-parametric memory – that is, information that lies in a
document outside of the LLM that the model can query for
specific information on a subject. As noted in the research,
the information retrieved from the documents during the RAG
process is used for in-context learning. Thus, RAG presents
a straightforward way to allow a model to access domain-
specific information, albeit at a latency cost. Research [15]
showed that in-context learning could be applied without
modifying a LLM architecture, showing the possibilities of
RAG as a form of drop-in model supplementation.

III. SECURITY-LLM PEN-TESTING ARCHITECTURE

The following details the design methodology used in this
research.

271
Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture used for the localized security-LLM hacking environment.

A. System Design

Figure 1 shows a condensed visualization of the training and
testing environment used in this research. LLMs are hosted
locally and the LoRA fine-tuning and RAG augmentation
from security data are conducted via a training user interface.
The interactions between the augmented LLMs and target
vulnerable hosts are managed by a command execution proxy
which prompts the LLMs, translates the LLM responses to
shell commands on target hosts, and feeds the command
outputs back to the LLM. While based on the work in [11],
[13], this design differs in two major respects. First, all exe-
cution occurs locally on a commercial-grade laptop computer.
Second, the architecture includes integrated LoRA and RAG
models that can be accessed during the penetration testing. All
LoRA training occurs before the command execution proxy is
connected via an API with the Text Generation Web UI. Once
the LLM attack begins, the proxy sends prompts formatted for
the LLM model type (in this case, Mistral 7B) to the locally
hosted Text Generation Web UI server via OpenAI-style API
calls, and the Web UI sends back the response of the base
LLM, LoRA fine-tuned model, or RAG model, depending on
which model is loaded in the Web UI. If a command for the
VM to run was requested from the LLM by the proxy, that
command is parsed out and fed by the proxy via SSH to the
vulnerable host, which sends the output back to the proxy
through the same protocol. This output is then sent by the
proxy back to the LLM for analysis. Once the analysis of that
specific command and its output has been generated by the
LLM, the command execution proxy asks the LLM to update
the state of the attack by generating a list of the commands
tested so far and their effects that can be used to help keep
the LLM focused on building a solution and not repeating
attacks. Finally, the proxy requests a new command from the
LLM with this analysis and state data passed along as in-
context information, and the cycle continues until the privilege
escalation attack is complete or until a predetermined number
of attack rounds have been completed.

B. Implementations

The Text Generation Web UI by oobabooga [16] was used
to run the large language models locally. This open-source
application also allowed for local fine-tuning with LoRA via
the Training Pro extension, integrated RAG LLM execution
using the superboogaV2 extension, and local network access
to these LLMs using an API modeled after the one used
by OpenAI, thus allowing for easy integration with libraries
accessing the OpenAI GPT models.

The open-source Wintermute tool from HackingBuddyGPT
[17] from the research [13] was used with a few modifications
as the security-LLM command execution proxy. All develop-
ment for this research was conducted locally on a Lenovo
Legion 5 Pro 16ACH6H using an AMD Ryzen 7 5800H CPU,
a NVIDIA RTX 3070 Mobile GPU with 8GB of dedicated
memory, and 32GB of DDR4-3200 working memory. This
system used Ubuntu 22.04.2 as the operating system and
supported the notable Python libraries of PyTorch version
2.2.1+cu121, Transformers version 4.38.2, and NLTK version
3.8.1.

C. Data

The security data used to fine-tune the models and provide
additional context via RAG were web pages [18], [19] describ-
ing privilege escalation on Linux systems for the purposes of
penetration testing. These web pages were manually scraped
for information, with special consideration given to Linux
commands that a LLM could easily pick up on. This data
was stored as a raw text file that was later used for LLM
training and non-parametric memory retrieval. These web
pages were chosen for their clear demonstration of possible
Linux attacks and natural language style, therefore allowing
LLM training and information retrieval to emulate the learning
process and periodic resource referencing that beginner pen
testers typically experience.

272
Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A graph of the LoRA fine-tuning using a rank of 16.

D. Model

Due to the VRAM constraints of the hardware of the
local development environment, only language models less
than or equal to 7 billion parameters in size were chosen
for this project. All models were sourced from Hugging
Face, an online machine learning platform for sharing models
and data. Although several models were tested in the initial
stages of development, the mistralai/Mistral-7B-Instruct-v0.2
by MistralAI was chosen due to its speed and aptitude in
coding. Indeed, as the report for this LLM notes, despite being
only 7 billion parameters in size and trained for general tasks,
it outperforms the 13-billion parameter Llama 2 model and
reaches similar coding performance to the 7-billion parameter
Code-Llama model, which was specifically trained for coding
[8]. Mistral 7B uses such techniques as grouped-query atten-
tion and sliding window attention to increase inference speed
and allow for longer sequence inputs. The license for Mistral
7B is Apache 2.0, ensuring that the use of Mistral 7B for this
research’s purpose of penetration testing was ethical.

E. Training

After the model had been chosen and the training data had
been collected, the Training Pro and superboogaV2 extensions
on the Text Generation Web UI were used to conduct the
LoRA training and RAG experiments, respectively. The Ope-
nAI extension was also enabled on this application along with
the “listen”, “api”, and “public api” session flags to allow
for this local LLM environment to communicate on the local
host via HTTP requests. In all cases, the Mistral 7B model
was first loaded into the Web UI using the “load-in-4bit” and
“use double quant” flags, which are meant to quantize the
model to 4-bit precision using the bitsandbytes Python library
in order to allow it to fit in the VRAM [16]. The popular
Python Transformers library from Hugging Face was used to
load this model. Following the documentation [16], all models
were loaded using the “use flash attention 2” flag as well,
which was kept on for model training. For LoRA Training, the
Mistral 7B model was loaded and LoRA training was selected
on the Web UI Training Pro interface. Once here, the training

dataset for the LoRA fine-tuning was selected. The training
dataset used in this research was unformatted, raw text.

Various parameters were used for LoRA training to achieve
a stable mix of injecting the model with the domain-specific in-
formation while also not erasing the valuable material already
learned by the LLM during its pretraining. For example, during
LoRA fine-tuning, the training was set to terminate after the
loss dropped below 1.0, as this fine-tuning was not meant to
erase the beneficial weights learned by the pretrained model.
Using the Mistral-7B-Instruct-v0.2 model base, the rank sizes
of 8, 16, and 32 were used for LoRA training using the web-
sourced data. The ranks of 8, 16, and 32 reduced the number of
trainable parameters from roughly 3,755,479,040 to 3,407,872,
6,815,744, and 13,631,488 trainable parameters, respectively.
As per the documentation for the Web UI, the LoRA alpha
values for the ranks of 8, 16, and 32 were 16, 32, and 64,
respectively. The default optimizer used for this training was
AdamW and the learning rate scheduler was set to linear decay.
The loss from the LoRA fine-tuning with a rank of 16 is shown
in 2.

After this fine-tuning, each of the models was tested by
running a few commands in the Web UI meant to gauge the
model’s capability to follow directions and answer cybersecu-
rity questions. From these trials, the model with a rank size
of 16 was chosen due to its superior performance to be the
model that would be used in the evaluation.

For RAG, the Text Generation Web UI was simply config-
ured via the superboogaV2 extension to automatically trigger
a query to the text database whenever the LLM was asked a
question. To prevent the file from overloading the context size
for the model, the max context tokens added to the input was
set to 1024, half of what the model inference was set to use.

IV. EVALUATION

Two of the vulnerable Debian virtual machine configu-
rations from the testing benchmark [11] were used to test
the fine-tuned and retrieval-augmented models. To check the
effectiveness of the models before they were tested against
the testing benchmark, the vulnerable Linux virtual machine
Lin.Security: 1 by In.security was used as an experimental
environment for determining if the LLMs running on the
Text Generation Web UI were capable of interfacing with the
command execution proxy and performing privilege escalation
attacks over SSH on a Linux machine. Oracle’s VirtualBox
was used to host these virtual machines. The benchmarks
chosen were GTFO SUID (which tests if a model can exploit
SUID binaries) and GTFO SUDO (which tests if a model can
exploit sudo misconfigurations) from [11]. These tests were
chosen because they are simple enough that a competent model
should be able to quickly pass them but complex enough
that a model cannot blindly enter prompts until it escalates
its privileges. Each test was conducted in a separate 64-bit
Debian 12 Bookworm virtual machine with the appropriate
vulnerabilities manually configured to these VMs. Since both
of these tests are relatively simple, no hints were offered to
the models. Each model was given 20 iterations to conduct

273
Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS OF AUTOMATED PRIVILEGE ESCALATIONS FOR GTFO SUDO

Name Success Iterations
Mistral 7B False 20

LoRA Mistral 7B False 2
RAG Mistral 7B True 19

TABLE II
SELECTED COMMANDS OF THE LLM CONFIGURATIONS FOR GTFO SUID

Name Command
Mistral 7B sudo find / -type d -user libuser -exec ls {} -l

2¿/dev/null — grep -F ’permission denied’
— awk -F’’ ’{print $2}’ — xargs -I {} sudo
chmod a+rx {}

LoRA Mistral 7B find / -perm 0772 -exec /bin/sh ;
RAG Mistral 7B find / -type f -user root -perm -4000 -

exec ls -ld {} — grep -v "d̂r-xr-xr-
x" — awk ’{print "sudo /bin/sh
¡ /dev/tabs/{$1}’

EXPECTED find / -exec /bin/sh -p

its privilege escalation attacks using the command execution
proxy.

A. Results

The results of running the LLM hacking environment with
each of the aforementioned model configurations (i.e., the
base model, the LoRA model, and the RAG model) on the
GTFO SUDO benchmark are shown in Table I. A table for
the GTFO SUID results is not included as none of the models
were capable of escalating privileges in this benchmark. Table
I shows that the GTFO SUDO test succeeds with the RAG
Mistral 7B model successfully escalating privileges on this
VM. Due to memory constraints, the LoRA Mistral 7B model
could not make it past the second round of execution. Selected
commands from each of the models for both benchmarks are
shown in Tables II and III.

B. Discussion and Limitations

While the current configuration of local LLM-assisted pen-
etration testing cannot rival that of industrial-strength models
such as the OpenAI models, it is perhaps unreasonable to
think that a local model a fraction of the size of the OpenAI
ones could ever approach the same performance and repre-
sentational depth. However, the locally trained and augmented
models do show some promise over the baseline. For example,

TABLE III
SELECTED COMMANDS OF THE LLM CONFIGURATIONS FOR GTFO SUDO

Name Command
Mistral 7B sudo chmod 4755 /usr/bin/sudo
LoRA Mistral 7B cat /etc/shadow cat /etc/passwd cat

/etc/shadow or tail /etc/shadow tail
/etc/passwd tail /etc/shadow or sudo -l sudo
-L ls /root /admin /magic

RAG Mistral 7B sudo su
EXPECTED sudo tar -cf /dev/null /dev/null –check-

point=1 –checkpoint-action=exec=/bin/sh

in the SUID privilege escalation attacks, while the baseline
model repeatedly tries to execute sudo commands even though
it is told that these commands do not work by the VM,
the RAG model moves beyond sudo commands to at least
try other commands. Ignoring the fact that these commands
did not work, this does indicate that the RAG model is a
bit more aware of the context of its commands, showing
the improved utility of the RAG model over the base one.
Further, this suggests that RAG can be used to augment larger,
more advanced models for improved results. It is important
to note that even the RAG model lost track of its purpose
at times to only provide shell commands for the task of
privilege escalation, leading to some of its answers being
reduced to mere explanations of its actions. Given the reliance
of LLMs on prompts, this perhaps points to possible gains in
performance if careful and precise LLM prompt engineering
were used to keep the model more focused on its goals.

It is vital to note that the model using Retrieval-Augmented
Generation was effective in gaining a root shell, thus demon-
strating that this method of penetration testing using special-
ized, local LLMs is feasible, if somewhat difficult to conduct.
RAG is therefore the most successful model improvement
method discovered by this research, as the RAG model was
the only model capable of effectively escalating privileges.
This successful event is visible in Figure 3. Note that since
LLMs are not always deterministic in their responses, these
results do not prove that the base Mistral 7B model cannot
execute privilege escalation attacks – it merely shows that it
was unable to do so in this case.

Unfortunately, in most cases, all three variations of Mistral
7B in this research produced commands and comments that
made little sense and did not markedly assist in the goal of
privilege escalation. In particular, it seemed as though the
LLM at times decided upon a particular attack vector – such as
using the /bin/find command – and stuck with that regardless
of the feedback from the system it received. This may suggest
that the underlying Mistral 7B model perhaps does not have
the representational capabilities to adaptively attack a target
machine.

It is also possible that the training corpus used in this
research was poorly formatted and thus could not provide
the system with meaningful assistance regarding penetration
testing, especially for the LoRA model. Future research should
focus on developing a higher-quality security database that
is formatted in the same manner as Mistral 7B’s training
data, as that would likely improve performance. Further, future
research should explore using newer, more robust models like
Meta AI’s Llama 3 8B for penetration testing, as these models
will likely have improved representational capabilities and thus
could be used for better penetration testing.

Interestingly, none of the models attempted to perform
robust surveillance on the Linux device before commencing
an attack. It is perhaps due to this reason that some of the
attack vectors chosen by the models seem nonsensical, as the
model was essentially guessing on how to initially attack the
system.

274
Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The success of the RAG Mistral model at gaining a root shell using the “sudo su” command.

Finally, as one last reflection, these Mistral 7B models do
seem to have a general sense of what they want to do –
for instance, from the command analysis, they can tell when
attacks are not working, and the commands that they suggest
are sometimes very close to being effective. Take, for example,
the command “sudo chmod 4755 /usr/bin/sudo” executed by
the Mistral 7B model in the GTFO SUDO tests. Had this
command been instead “sudo /bin/bash” or even just “sudo
-i”, the attack would have worked perfectly. It is difficult to
draw any conclusive results from this, but it could indicate
that with a gentle nudge by a human in the loop, this model
could be quite effective. However, the biggest takeaway from
these tests is that the a RAG-supported local LLM can perform
successful privilege escalation attacks, which is a significant
expansion on the previous study.

V. CONCLUSION

Powered by the rapid advancement of artificial intelligence,
this research explores the feasibility of using generative AI
technologies to carry out automatic cyber-attacks based on
AI-generated system commands and their outputs. Our exper-
iments demonstrate that large language models fine-tuned and
augmented with security hacking information are promising.
In particular, the process of adding RAG to a local LLM for
penetration testing and integrating it in a localized environment
provides a proof-of-concept that autonomous hacking is the-
oretically possible to successfully implement on average user
machines. Future research is necessary to determine whether
the models currently publicly available are well suited to this
task and whether their performance can be improved through
hardware, software, and data advancements.

REFERENCES

[1] A. Happe and J. Cito, “Understanding hackers’ work: An empirical study
of offensive security practitioners,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), New York, NY,
November 30 2023, pp. 1669–1680.

[2] D. Devadiga, G. Jin, B. Potdar, H. Koo, A. Han, A. Shringi, A. Singh,
K. Chaudhari, and S. Kumar, “Gleam: Gan and llm for evasive adver-
sarial malware,” in 14th International Conference on Information and
Communication Technology Convergence (ICTC), Jeju Island, Korea,
October 11-13 2023, pp. 53–58.

[3] T. Naito, R. Watanabe, and T. Mitsunaga, “Llm-based attack scenarios
generator with it asset management and vulnerability information,” in 6th
International Conference on Signal Processing and Information Security
(ICSPIS), Dubai, UAE, November 8-9 2023, pp. 99–103.

[4] M. Sultana, A. Taylor, L. Li, and S. Majumdar, “Towards evaluation and
understanding of large language models for cyber operation automation,”
in IEEE Conference on Communications and Network Security (CNS),
Orlando, FL, October 2-5 2023, pp. 1–6.

[5] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From chatgpt
to threatgpt: Impact of generative ai in cybersecurity and privacy,” IEEE
Access, vol. 11, pp. 80 218–80 245, August 2023.

[6] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “Pentestgpt: An llm-empowered
automatic penetration testing tool,” arXiv preprint arXiv:2308.06782,
2023.

[7] K. Shashwat, F. Hahn, X. Ou, D. Goldgof, L. Hall, J. Ligatti, S. R. Raj-
gopalan, and A. Z. Tabari, “A preliminary study on using large language
models in software pentesting,” arXiv preprint arXiv:2401.17459, 2024.

[8] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[9] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models
(poster),” in International Conference on Learning Representations
(ICLR), virtual, April 25-29 2022.

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive nlp tasks,” in
Proceedings of the 34th Conference on Neural Information Process-
ing Systems (NIPS), Vancouver, Canada, December 6 - 12 2020, p.
9459–9474.

[11] A. Happe, A. Kaplan, and J. Cito, “Llms as hackers: Autonomous linux
privilege escalation attacks,” arXiv preprint arXiv:2310.11409, 2024.

[12] E. M. Kowira, N. N. Suki, and Y. Nathan, “Automated privilege
escalation enumeration and execution script for linux,” AIP Confer-
ence Proceedings on the International Virtual Conference on Machine
Learning Applications in Applied Sciences and Mathematics (IVCMASM
2022), vol. 2802, no. 1, January 25 2024.

[13] A. Happe and J. Cito, “Getting pwn’d by ai: Penetration testing with
large language models,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), New York, NY, November 30 2023,
p. 2082–2086.

[14] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “Llama-reviewer: Advancing
code review automation with large language models through parameter-
efficient fine-tuning,” in IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE), Florence, Italy, October 9-12 2023, pp.
647–658.

[15] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-
Brown, and Y. Shoham, “In-context retrieval-augmented language mod-
els,” Transactions of the Association for Computational Linguistics,
vol. 11, pp. 1316–1331, November 13 2023.

[16] oobabooga et al., “A gradio web ui for large language
models.” 2024. [Online]. Available: https://github.com/oobabooga/
text-generation-webui

[17] A. Happe, Neverbolt, and I. E. Ashimine, “Hackingbuddygpt,” 2024.
[Online]. Available: https://github.com/ipa-lab/hackingBuddyGPT

[18] R. Chandel, “Hacking articles,” https://www.hackingarticles.in, ac-
cessed: 2024-05-02.

[19] “Hacktricks,” https://book.hacktricks.xyz, accessed: 2024-05-02.

275
Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on October 15,2024 at 14:59:49 UTC from IEEE Xplore. Restrictions apply.

